Skip to content

HIERARCHICAL CLASSIFICATION OF THE SUBPHYLUM CHELICERIFORMES

HIERARCHICAL CLASSIFICATION OF THE SUBPHYLUM CHELICERIFORMES (SCHRAM AND HEDGEPETH 1978)

EUKARYA> UNIKONTA> OPISTHOKONTA> ANIMALIA> BILATERIA> PROTOSTOMATA> ECDYSOZOA> PANARTHROPODA> ARTHROPODA> CHELICERIFORMES
SUBPHYLUM CHELICERIFORMES LINKS
This taxonomic system comes from Brusca and Brusca (2003), but it is fairly typical of modern taxonomic treatments. The question of the relationship of the Pycnogonids with the Chelicerates has yet to be resolved, and they may be separated into different subphyla. Also, the chelicerata may be a sister group to the trilobites.
  • CLASS CHELICERATA
    • The chelicerate body is made of two major body regions: the prosoma (cephalothorax) and opisthosoma (abdomen). The prosoma is usually covered by a carapace-like shield with simple median eyes and compound lateral eyes. Opisthosoma up to 12 segments with a terminal telson. The prosoma bears 4 pairs of uniramous, multiarticulate walking legs. Modified appendages include chelicerae and pedipalps.
      • SUBCLASS MEROSTOMATA (2 ORDERS; 1 EXTANT ORDER)
        • Marine; heavy exoskeleton; prosoma with large horseshoe-shaped carapace, separated from opisthosoma by hinge; telson forms long tail spine; 2 lateral compound eyes and 2 median ocelli; chelicerae small; pedipalps leg-like, chelate; walking legs chelate, except last pair; last pair with leaf-like processes used for burrowing; spiny gnathobases of limbs macerate food; 1st pair of opisthosomal appendages form flap over reproductive openings; 2nd-6th pairs of opisthosomal appendages form swimming and gaseous exchange organs; opisthosoma unsegmented, with lateral spines; excretory organs coxal; fertilization external; with a “trilobite” larva, benthic.
          • Limulus, Carcinoscorpius, Tachypleus.
          • Eurypterus, Pterygotus.
      • SUBCLASS ARACHNIDA (11 ORDERS)
        • Essentially terrestrial; exoskeleton light to heavy; prosoma wholely or partly covered by a carapace; opisthosoma basically of 13 segments plus telson, often reduced; respiratory organs book lungs or tracheae; without compound eyes; abdominal appendages highly modified or absent; consume liquid (usually pre-liquified animal) food using a pumping pharynx; young stage sometimes with 3 pairs of legs.
          • Aponomma, Argas, Boophilus, Dermacentor, Ixodes, Ornithodorus, Zeroseius, Demodex, Halotydeus, Penthaleus, Scirus, Tydeus, Acanthophrynus, Damon, Heterophrynus, Stegophrynus, Tarantula, Hepathela, Liphistius, Cyclocosmia, Ummidia, Atypus, Acanthoscurria, Aphonopelma, Diplura, Loxosceles, Argyrodes, Episinus, Latrodectus, Ulesanus, Hyptiotes, Nephila, Uloborus, Araneus, Argiope, Cyrtophora, Mastophora, Pasilobus, Zygiella, Dolichognatha, Eucta, Leucauge, Meta, Pachygnatha, Clubiona, Erigone, Dicymbium, Linyphia, Agelena, Coelotes, Argyroneta, Lycosa, Pardosa, Pirata, Dolomedes, Pisaura, Oxyopes, Thomisus, Xysticus, Heteropoda, Portia, Salticus, Dinopis, Scytodes, Caddo, Leiobunum, Trogulus, Allokoenenia, Eukoeninia, Koeninia, Leptokoeninia, Prokoeninia, Chelifer, Chitrella, Chthonius, Dinocheirus, Garypus, Menthus, Pseudogarypus, Cryptocellus, Pseudocellus, Ricinoides, Agastoschizomus, Megaschizomus, Nyctalops, Protoschizomus, Schizomus, Androctonus, Bothriurus, Buthus, Centuroides, Chaerilus, Diplocentrus, Hadrurus, Hemiscorpion, Nebo, Parabuthus, Paruroctonus, Tityus, Vaejovis, Biton, Branchia, Dinorhax, Galeodes, Solpuga, Abaliella, Chajnus, Mastigoproctus, Charinus, Thelyphonus, Miranda, Latrodectus, Eremobates, Galeodes, Phalangium, Leioburnum, Trombicula.
  • CLASS PYCNOGONIDA (1 ORDER) INCERTAE SEDIS
    • Marine; opisthosoma very small, unsegmented; prosoma divided into a head with cylindrical proboscis and 3 pairs of appendages (chelicerae, pedipalps, ovigerous legs – non-ambulatory legs used for carrying eggs), and a segmented trunk of 4-6 segments each with one pair of legs borne on the end of large lateral trunk processes; legs often very long with a span of 75 cm; 2 pairs of eyes on rounded tubercle on posterior head region; lateral gut caeca and parts of gonads extend into legs; without excretory or respiratory organs; haemocoel divided into upper and lower sections by horizontal membrane; nervous system not concentrated; eggs brooded by male and hatch as protonymphal larval stage with 3 pairs of appendages.
      • Acheilia, Ascorhynchus, Austrodecus, Colossendeis, Delcopoda, Nymphon, Nymphopsis, Pycnogonum, Tanystylum.
LITERATURE CITED

Averof, M. and M. Akam. 1995. Insect-crustacean relationships: insights from comparative developmental and molecular studies. Phil. Trans. R. Soc. London. B. 347: 293-303.

Ax, P. 2000. Multicellular Animals II. Springer Verlag. Berlin.

Brusca, R. C. and G. J. Brusca. 2003. Invertebrates. Sinauer Associates, Inc. Sunderland, Mass.

Buchsbaum, R. 1938. Animals Without Backbones, An Introduction to the Invertebrates. The University of Chicago Press. Chicago.

Budd, G. E. 1998. Arthropod body plan evolution in the Cambrian with an example from anomalocaridid muscle. Lethaia. 31: 197-210.

Budd, G. E. 2001. Tardigrades as ‘Stem-Group Arthropods’: The evidence from the Cambrian fauna. Zool. Anz. 240: 265-279.

Conway Morris, S. (1998). The crucible of creation: the Burgess Shale and the rise of animals. Oxford [Oxfordshire]: Oxford University Press. pp. 56–9.

Dunn, C.W., A. Hejnol, D.Q. Matus, K. Pang, W.E. Browne, S.A. Smith, E. Seaver, G.W. Rouse, M. Obst, G.D. Edgecombe, M.V. Sørensen, S.H.D. Haddock, A. Schmidt-Rhaesa, A. Okusu, R.M. Kristensen, W.C. Wheeler, M.Q. Martindale, and G. Giribet. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature. 452: 745-749.

Garey, J. R. 2001. Ecdysozoa: The relationship between Cycloneuralia and Panarthropoda. Zoologischer Anzeiger 240: 321-330.

Giribet, G., G. D. Edgecombe, J. M. Carpenter, C. A. D’Haese, and W. C. Wheeler. 2004. Is Ellipura monophyletic? A combined analysis of basal hexapod relationships with emphasis on the origin of insects. Organisms, Diversity and Evolution. 4: 319-340.

Hickman, C. P. 1973. Biology of the Invertebrates. The C. V. Mosby Company. Saint Louis.

Ivantsov, A. Yu. 2004. New Proarticulata from the Vendian of the Arkhangel’sk Region. Paleontological Journal. 38(3): 247-253.

Lavrov, D. V., W. M. Brown, and J. L. Boore. 2004. Phylogenetic position of the Pentastomida and (pan)crustacean relationships. Proceedings of the Royal Society of London. Series B. 271: 537-544.

Mallatt, J. M., J. R. Garey, and J. W. Shultz. 2003. Ecdysozoan phylogeny and Baysean inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Molecular Phylogenetics and Evolution. 31: 178-191.

Manton, S. F. 1977. The arthropod habits, functional morphology, and evolution. Clarendon Press. Oxford.

Margulis, L. and K. Schwartz. 1998. Five kingdoms, an illustrated guide to the phyla of life on earth. 3rd Edition. W. H. Freeman and Company. New York.

Mayer, G. 2006. Structure and development of onychophoran eyes: What is the ancestral visual organ in arthropods? Arthropod Structure and Development. 35: 231-245.

Mayer, G. and P. M. Whittington. 2009. Velvet worm development links myriapods with chelicerates
Nielsen, C. 2001. Animal Evolution: Interrelationships of the Living Phyla. 2nd Edition. Oxford University Press. Oxford.

Patel, N. H., E. Martin-Blanco, K. G. Coleman, S. J. Poole, M. C. Ellis, T. B. Kornberg, and C. S. Goodman. 1989. Expression of engrailed proteins in arthropods, annelids, and chordates. Cell. 58: 955-968.

Pechenik, J. A. 2005. Biology of the Invertebrates. McGraw-Hill. New York.

Regier, J. C., J. W. Shultz, and R. E. Kambic. 2005. Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proceedings of the Royal Society of London. Series B. 272: 395-401.

Reiger, J. C., J. W. Schultz, A. R. D. Ganley, A. Hussey, D. Shi, B. Ball, A. Zwick, J. E. Stajich, M. P. Cummings, J. W. Martin, and C. W. Cunningham. 2008)Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence. Syste. Biol 57(6): 920-938.

Ruppert, E. E. and R. D. Barnes. 1994. Invertebrate Zoology. 6th edition. Saunders. Ft Worth, TX.

Ruppert, E. E., R. S. Fox, and R. D. Barnes. 2004. Invertebrate Zoology: A Functional Evolutionary Approach. Seventh Edition. Thomson, Brooks/Cole. New York. pp. 1-963.

Strausfeld, N. J., C. M. Strausfeld, R. Loesel, D. Rowell, and S. Stowe. 2006. Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage. Proc. R. Soc. London. B. 273: 1857-1866.

Telford, M. J. S. J. Bourlat, A. Economou, D. Papillion, and O. Rota-Stabelli. 2008. The evolution of Ecdysozoa. Phil. Trans. R. Soc. B. 363: 1529-1537.

Tudge, C. 2000. The Variety of Life, A Survey and a Celebration of all the Creatures That Have Ever Lived. Oxford University Press. New York.

Waggoner, B. M. 1996. Phylogenetic hypotheses of the relationships of arthropods to Precambrian and Cambrian problematic fossil taxa. Systematic Biology 45(2): 190-222.

Whittington, H. B. and D. E. G. Briggs. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Phil. Trans. R. Soc. London. B. 309: 569-609.

Willmer, P. 1990. Invertebrate relationships, patterns in animal evolution. Cambridge University Press. Cambridge.
By Jack R. Holt and Carlos A. Iudica. Last revised: 02/04/2012
Print Friendly, PDF & Email
Skip to toolbar