Skip to content

CLASS MAGNOLIOPSIDA

CLASS MAGNOLIOPSIDA (Brongniart 1843)

EUKARYA> ARCHAEPLASTIDA> VIRIDIPLANTAE> STREPTOBIONTA> EMBRYOPHYTA> TRACHEOPHYTA> SPERMOPHYTA> ANGIOSPERMOPHYTA> MAGNOLIOPSIDA
Magnoliopsida (mag-no-le-OP-si-da) is derived from the genus Magnolia, the Latinized name of Pierre Magnol, a French physician and botanist (1638-1715). The suffix is derived from the Greek for that which resembles (opsis -οψισ). Together, they mean that which resembles a Magnolia.
INTRODUCTION TO THE MAGNOLIOPSIDA

Magnoliopsida is a monophyletic collection of taxa (four orders). According to Judd et al. (2002) and APG II (2003), the Magnoliopsids appear to be sisters to the Monocots (see Figure 1). Recent work (summarized in Judd et al. 2002 and APG II 2003) suggests that the magnoliid complex is derived, but many of the woody taxa retain plesiomorphic characters such as many separate tepals, petaloid stamens, and many free pistils on an elongate receptacle. The class has about 5700 species, which is not very speciose given the typical flowering plant diversity.
FIGURE 1. CLADOGRAM OF THE ORDERS OF MAGNOLIOPSIDA WITHIN THE CONTEXT OF THE FLOWERING PLANTS. The cladistic relationships between the magnoliopsids (in green box) and other groups of flowering plants. The positions of the four magnoliopsid orders are consistent through almost all studies of the past 10 years (e.g. Mathews and Donoghue 2000, Soltis et al. 1999, Hilu et al. 2003, Jansen et al. 2007, APG I 1998, APG II 2003, APG III 2009, Chase and Reveal 2009).

THE MAGNOLIID CLADE

Figure 1 shows that the magnoliids are comprised of two clades: Piperales + Canellales and Magnoliales + Laurales. APG III (2009) and Chase and Reveal (2009) indicate that the Chloranthales likely is the sister to the magnoliids (see also in Figure 1). Because APG III (2009) includes the order in its group of basal taxa, we have placed it in the “Nymphaeopsida.” Chase and Reveal (2009) consider the order unassigned, and they do not recognize a superorder.

ORDER PIPERALES

The Piperales is comprised of six families, of which Piperaceae is by far the most diverse.

PIPERACEAE

This is the pepper family and can be recognized by the formation of upright spikes of minute flowers without perianths. Piper nigrum (Black Pepper Figure 2) is historically the most important of the spices. The search for black pepper and the attempt to control its production and distribution helped to launch some of the earliest spice voyages of discovery and conquest by the Europeans.

ORDER CANELLALES

The Canellales is a relatively new order (Soltis and Soltis 2004) and formed of two very different families: Canellaceae and Winteraceae. However, all taxa are woody shrubs or small trees that are aromatic with a general southern hemispheric distribution. Drimys (Figure 3) occurs from Argentina and Chile to southern Mexico. The apparently primitive features of plants like Drimys have been interpreted as derived states in response to freezing (Feild et al. 2002).

ORDER MAGNOLIALES

The Magnoliales includes six families (e.g. nutmeg, pawpaw, and the magnolias).

MAGNOLIACEAE

The diversity of the Magnoliaceae is not very high (12 genera and 230 species, most of which are in Magnolia); however, they and other members of the Magnoliales have been at the focus of discussion about basal families in the flowering plants (e.g. Cronquist 1988; Dahlgren 1983; Donoghue and Doyle 1989; Qiu et al. 1993, 2000; Soltis et al. 1997, 2000; Takhtajan 1969, 1980, 1997; Thorne 1974, 1992). Most members of the Magnoliaceae are small trees or shrubs, though in our area, Liriodendron, the Tulip Poplar grows to be a very large tree. Members of the family occur in forests of temperate and tropical North America and Asia as well as tropical South America. Figure 4 shows the end of a branch in flower of Magnolia grandiflora, the Southern Magnolia. The leaves are large, simple and have stipules. The flowers are large, actinomorphic, and showy with an elongate receptacle and many whorls of tepals, petaloid stamens, and petaloid pistils. The fruit becomes an aggregate of follicles. Although most Magnolia species are pollinated by beetles, Liriodendron is pollinated by bees. Economically, Magnolia has its greatest value as an ornamental plant. However, Liriodendron grows large and fast making lumber that is one of the softest of the hardwoods.

ORDER LAURELALES

Laurelales is a large order with seven families and up to 2800 species.

LAURACEAE

Economically, Lauraceae is the most important family and includes small aromatic trees like Bay Laurel, cinnamon, avacado, and sassafras (Judd et al. 2002). Fruit of the Lauraceae is a drupe of which avacado (Figure 5) is a very large example.

FIGURE 2. Piper nigra, Black Pepper, shows the venation of the leaf that is characteristic of this family. The plant in fruit was photographed in Malaya.
Image by Aruna and licensed with the Creative Commons
FIGURE 3. Drimys winteri, Winter’s Bark, once was thought to be among the most primitive extant flowering plants. Reinterpretation of the plant following molecular phylogenetics, has led to an explanation of secondary simplification in response to freezing conditions in winter (tolerates temperatures down to -20C). From Argentina and Chile north to Mexico.
Image by Eric Hunt and licensed with the Creative Commons
FIGURE 4. Magnolia grandiflora, Southern Magnolia, is an icon of the American South. This plant is evergreen with large simple glossy leaves on large conical trees. The flowers have numerous creamy white tepals and a cone-like center with petaloid stamens (lighter colored segments on the lower half) and many simple pistils.
Image by Paximius and licensed with the Creative Commons
FIGURE 5. Persea americana, Avacado, is a relative of Sassafras and Bay Laurel. It is a small tree that produces fairly large economically important drupes.
Image by B. Navez and licensed with the Creative Commons
LITERATURE CITED

APG I, K. Bremer, M. W. Chase, P. F. Stevens, A. A. Anderberg, A. Backlund, B. Bremer, B. G. Briggs, P. K. Endress, M. F. Fay, P. Goldblatt, M. H. G. Gustafsson, S. B. Hoot, W. S. Judd, M. Kallersjo, E. A. Kellogg, K. A. Kron, D. H. Les, C. A. Morton, D. L. Nickrent, R. G. Olmstead, R. A. Price, C. J. Quinn, J. E. Rodman, P. J. Rudall, V. Savolainen, D. E. Soltis, P. S. Soltis, K. J. Sytsma, and M. Thulin (Angiosperm Phylogeny Group). 1998. An Ordinal Classification for the Families of Flowering Plants. Annals of the Missouri Botanical Garden. 85:531-553.

APG II, B. Bremer, K. Bremer, M. W. Chase, J. L. Reveal, D. E. Soltis, P. S. Soltis, P. F. Stevens, A. A. Anderberg, M. F. Fay, P. Goldblatt, W. S. Judd, M. Källersjö, J. Kårehed, K. A. Kron, J. Lundberg, D. L. Nickrent, R. G. Olmstead, B. Oxelmann, J. C. Pires, J. R. Rodman, P. J. Rudall, V. Savolainen, K. J. Sytsma, M. van der Bank, K. Wurdack, J Q.-Y. Xiang, and S. Zmartzy. 2003. The update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society. 141:399-436.

APG III, B. Bremer, K. Bremer, M. W. Chase, M. F. Fay, J. L. Reveal, D. E. Soltis, P. S. Soltis, P. F. Stevens, A. A. Anderberg, M. J. Moore, R. G. Olmstead, P. J. Rudall, K. J. Sytsma, D. C. Tank, K. Wurdack, J Q.-Y. Xiang, and S. Zmartzy. 2009. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG I II. Botanical Journal of the Linnean Society. 161: 105-121.

Barkman, T. J., G. Chenery, J. R. McNeal, J. Lyons-Weiler, W. J. Ellisens, G. Moore, A. D. Wolfe, and C. W. dePamphilis. 2000. Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proceedings of the National Academy of Sciences U.S.A. 97:13166-13171.

Bowe, L. M., G. Coat, and C. W. dePamphilis. 2000. Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proceedings of the National Academy of Sciences (USA) 97:4092-4097.

Chase, M. W. and J. L. Reveal. 2009. A phylogenetic classification of the land plants to accompany APG III. Botanical Journal of the Linnean Society. 161: 122-127.

Chaw S.-M., C. L. Parkinson, Y. Cheng, T. M. Vincent, and J. D. Palmer. 2000. Seed plant phylogeny inferred from all three plant genomes: Monophyly of extant gymnosperms and origin of Gnetales from Conifers. Proceedings of the National Academy of Sciences (USA) 97:4086-4086.

Cronquist, A. 1981. An Integrated System of Classification of Flowering Plants. New York. Columbia Univ. Press. New York.

Dahlgren, R. M. T. and H. T. Clifford. 1982. The Monocotyledons – A Comparative Study. Academic Press, New York.

Davies, T. J., T. G. Barraclough, M. W. Chase, P. S. Soltis, D. E. Soltis, and V. Savolainen. 2004. Darwin’s abominable mystery: insights from a supertree of the angiosperms. Proceedings of The National Academy of Sciences 101: 1904-1909.

Donoghue, M. J. and J. A. Doyle. 2000. Seed plant phylogeny: demise of the anthophyte hypothesis? Current Biology 10:R106-R109. [C]

Doyle, J. A. 2006. Seed ferns and the origin of angiosperms. Journal of the Torrey Botanical Society. 133(1): 169-209.

Endress, P. K. and J. A. Doyle. 2009. Reconstructing the ancestral angiosperms flower and its initial specializations. American Journal of Botany. 96(1): 22-66.

Feild, T. S., T. Brodribb, and N. M. Holbrook. 2002. Hardly a relict: Freezing and the evolution of vesselless wood in Winteraceae. Evolution. 56: 464-478.

Field, T. S. and N. C. Arens. 2007. The ecophysiology of early angiosperms. Plant Cell and Environment. 30: 291-309.

Friis, E. M. and P. Crane. 2007. New home for tiny aquatics. Nature. 446: 269-270.

Frohlich, M. W. and M. W. Chase. 2007. After a dozen years of progress the origin of angiosperms is still a great mystery. Nature. 450: 1184-1189.

Hilu, K. W., T. Borsch, K. Muller, D. E. Soltis, P. A. Soltis, V. Savolainen, M. W. Chase, M. P. Powell, L. A. Alice, R. Evans, H. Sauquet, C. Neinhuis, T. A. B. Slotta, J. G. Rohwer, C. S. Campbell, and L. W. Chatrou. 2003. Angiosperm phylogeny based on MATK sequence information. American Journal of Botany. 90(12): 1758-1776.

Jansen, R. K., Z. Cai, L. A. Raubeson, H. Daniell, C. W. dePamphilis, J. Leebens-Mack, K. F. Muller, M. Guisinger-Bellian, R. C. Haberle, A. K. Hansen, T. W. Chumley, S-B. Lee, R. Peery, J. R. McNeal, J. V. Kuehl, and J. L. Boore. 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proceedings of the National Academy of Sciences. USA. 104(49): 19369-19374.

Ji, Q., H. Li, L. M. Bowe, Y. Liu, and D. W. Taylor. 2004. Early Cretaceous Archaefructus eoflora sp. nov. with bisexual flowers from Beipiap, Western Liaoning, China. Acta Geologica Sinica. 78(4): 883-896.
Jones, S. B. and A. E. Luchsinger. 1986. Plant Systematics. 2nd edition. McGraw-Hill Book Co. New York.
Judd, W. S., C. S. Campbell, E. A. Kellogg, P. F. Stevens, and M. J. Donoghue. 2002. Plant Systematics: A Phylogenetic Approach. Second Edition. Sinauer Associates, Inc. Sunderland, MA.

Mathews, S. and M. J. Donoghue. 2000. Basal angiosperm phylogeny inferred from duplicate phytochromes A and C. International Journal of Plant Sciences. 161:S41-S55.

Moore, M. J., C. D. Bell, P. S. Soltis, and D. E. Soltis. 2007. Using plastids genome-scale data to resolve enigmatic relationships among basal angiosperm. Proceedings of the National Academy of Sciences, USA. 104(49): 19363-19368.

Philippe, M., B. Gomez, V. Girard, C. Coiffard, V. Daviero-Gomez, F. Thevenard, J-P. Billon-Bruyat, M. Guiomar, J-L. Latil, J. Le loeuff, D. Nedaudeau, D. Olivero, and J. Schlogl. 2008. Woody or not woody? Evidence for early angiosperm habit from the Early Cretaceous fossil wood record of Europe. Paleoworld. 17: 142-152.

Qiu, Y. L., J. H. Lee, F. Bernasconi-Quadroni, D. E. Soltis, P. S. Soltis, M. Zanis, E. A. Zimmer, Z. D. Chen, V. Savolainen, and M. W. Chase. 1999. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature. 402:404-407.

Qiu, Y. L., J. H. Lee, F. Bernasconi-Quadroni, D. E. Soltis, P. S. Soltis, M. Zanis, E. A. Zimmer, Z. D. Chen, V. Savolainen, and M. W. Chase. 2000. Phylogeny of basal angiosperms: Analyses of five genes from three genomes. International Journal of Plant Sciences. 161:S3-S27.

Qiu, Y.L., L. Libo, B. Wang, Z. Chen, V. Knoop, M. Groth-Malonek, O. Dombrovska, J. Lee, L. Kent, J. Rest, G.F. Estabrook, T.A. Hendry, D.W. Taylor, C.M. Testa, M. Ambros, B. Crandall-Stotler, R.J. Duff, M. Stech, W. Frey, D. Quandt, and C.C. Davis. 2006. The deepest diverges in land plants inferred from phylogenomic evidence. Proceedings of the National Academy of Sciences. 103:15511-15516.

Qiu, Y.L., L. Libo, B. Wang, Z. Chen, O. Dombrovska, J. Lee, L. Kent, R. Li, R. Jobson, T. A. Hendry, D. W. Taylor, C. M. Testa, and M. Ambros. 2007. A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. International Journal of Plant Science. 168(5): 691-708.

Rothwell, G. W., W. L. Crepet, and R. A. Stockey. 2009. Is the anthophyte hypothesis alive and well? New evidence from the reproductive structures of Bennettitales. American Journal of Botany. 96(1): 296-322.

Saarela, J. M., H. S. Rai, J. A. Doyle, P. K. Endress, S. Mathews, A. D. Marchant, B. G. Briggs, and S. W. Graham. 2007. Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature. 446: 312-315.

Soltis, P. S. and D. E. Soltis. 2004. The origin and diversification of angiosperms. American Journal of Botany. 91:1614-1626.

Soltis, P. S., D. E. Soltis, and M. W. Chase. 1999a. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature. 402:402-404.

Soltis, D. E., P. S. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis, V. Savolainen, W. H. Hahn, S. B. Hoot, M. F. Fay, M. Axtell, S. M. Swensen, L. M. Prince, W. J. Kress, K. C. Nixon, and J. S. Farris. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnean Society 133:381-461.

Sun, G., Q. Ji, D. L. Dilcher, S. Zheng, K. C. Nixon, and X. Wang. 2002. Archaefructaceae, a new basal angiosperm family. Science. 296(5569): 899-904.

Takhtajan, A. 1997. Diversity and Classification of Flowering Plants. Columbia University Press. New York.
Wang, X., S. Duan, B. Geng, J. Cui, and Y. Yang. 2007. Schmeissneria: a missing link to angiosperms? BioMedCentral Evolutionary Biology. 7-14: (13 pages).

Zanis, M. J., D. E. Soltis, P. S. Soltis, S. Mathews, and M. J. Donoghue. 2002. The root of the angiosperms revisited. Proceedings of the National Academy of Sciences. U.S.A. 99:6848-6853.
By Jack R. Holt. Last revised: 04/06/2014
Print Friendly, PDF & Email
Skip to toolbar