SYNOPTIC DESCRIPTION OF PHYLUM ENDOMYXA

EUKARYA> CHROMALVEOLATA> RHIZARIAE> ENDOMYXA |
ENDOMYXA LINKS
Descriptions of the phylum come from Kudo (1966), Grell (1976), Cachon et al. (1990), Febvre (1990), Febvre-Chevalier (1990), Patterson (1999), Swale and Belcher 1974, Beech and Moestrup 1986; Patterson and Zolffel 1991, Dylewski (1990), Margulis and Schwartz (1998), and Sleigh et al. (1984). |
I. SYNONYMS: Sarcodina (some), radiolaria (some), amoboeflagellates (some), heliozoans (some). The parasitic forms are known as Plasmodiophorids, plasmodiophoromycota, endoparasitic slime molds, phytomyxea, Sporozoans, acetosporans, ascetosporeans..
II. NUMBER: > 1,000 species?
III. PHYLUM CHARACTERISTICS
- A. Structure
- Cell Form: Unicells that may have radiating, filose pseudopods, parasitic forms tend to be plasmodial. Some taxa have flagellated spores.
- Flagella: Zoospores (text with tooltip) A zoospore is an asexual spore that is motile. Zoo- (pronoumced zo-o) is a prefix that means moving. (when present) with unequal, whiplash flagella (text with tooltip) (1) A whiplash flagellum is a eukaryotic 9+2 flagellum with few or no flagellar hairs or scales. These may be directed anteriorly or posteriorly. (2) A whiplash flagellum is free of hair-like mastigonemes and usually is trailing or posteriorly-directed. ; the shorter flagellum is directed anteriorly (text with tooltip) An anteriorly-directed flagellum extends in the direction of the motion of the motile cell. The interpretation is that the flagellum functions by pulling the cell. and the longer flagellum is directed posteriorly (text with tooltip) Recurrent flagella bend to the posterior end of the cell. Typically, they are identified as recurrent when anteriorly-directed flagella are present. .
- Basal Bodies: Variable; 45 – 60 degrees
- Cell Covering : Generally naked; cyst covering of polysaccharide other than cellulose; probably chitin; some with organic test. Haplosporidians have distinctive spore with a lid.
- Chloroplasts: Not present
- Food Reserves: Not known
- Mitochondria: Present with tubular cristae (text with tooltip) Mitochondrial cristae that form as extended saccate structures or tubes are called tubular cristae. .
- Golgi (text with tooltip) Golgi apparatus (also called dictyosome) is an internal membrane system of stacked flattened sacs. They occur in nearly all eukaryotes and are involved in storing and secreting cellular products. : Present.
- Nucleus: Many are plasmodial (multinucleate); some with cruciform division (text with tooltip) Cruciform division is a cross-like appearance of the nucleus during metaphase in the plasmodiophorotists. The appearance of a cross comes from an elongate nucleolus perpendicular to the direction of the movement of the chromosomes in closed division. . Haplosporidians with persistent spindle in all non dividing cells.
- Centrioles: Present
- Inclusions and Ejectile Organelles: Food vacuoles?
- B. Mitosis, Meiosis and Life History
- Mitosis: Likely closed (text with tooltip) Mitosis is closed when the segregation of daughter chromosomes occurs within the bounds of the nuclear membrane (the nuclear membrane does not break down). with intranuclear spindle (text with tooltip) An intranuclear spindle elaborates within the nuclear membrane of an organism with closed mitosis. . Plasmodiophorids have an unusual method of chromosome segregation called cruciform division (chromatin divides in a clump and moves to the poles while the nucleolus elongates).
- Meiosis: Nuclei become invisible (akaryotic) during meiosis. Not described for most groups.
- Sexual Reproduction and Life History: Complex in the parasitic forms; poorly known for the free-living taxa. Plasmodiophorans: Life cycle is complex with haploid and diploid plasmodia and secondary zoospores which function as isogametes (text with tooltip) Isogametes are gametes that are equal in size. . Haplosporidians may have a sexual life history.
- C. Ecology: Many are intracellular parasites of plants and animals. Free-living taxa feed on bacteria, detritus, algae, and other eukaryotes; mostly associated with substrates.
LITERATURE CITED Adl, S. M., A. G. B. Simpson, M. A. Farmer, R. A. Andersen, O. R. Anderson, J. R. Barta, S. S. Bowser, G. Brugerolle, R. A. Fensome, S. Fredericq, T. Y. James, S. Karpov, P. Kugrens, J. Krug, C. E. Lane, L. A. Lewis, J. Lodge, D. H. Lynn, D. G. Mann, R. M. McCourt, L. Mendoza, O. Moestrup, S. E. Mozley-Standridge, T. A. Nerad, C. A. Shearer, A. V. Smirnov, F. W. Spiegel, and M. F. J. R. Taylor. 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology. 52(5):399-451. Archibald, J. M. and P. J. Keeling. 2004a. Actin and ubiquitin protein sequences support a cercozoan/foraminiferan ancestry for the plasmodiophorid plant pathogens. Journal of Eukaryotic Microbiology. 51(1):113-118. Archibald, J. M., D. Longet, J. Palowski, and P. J. Keeling. 2003. A novel plolyubiquitin structure in Cercozoa and Foraminifera: Evidence for a new eukaryotic supergroup. Molecular Biology and Evolution. 20:62-66. Balouet, G. 1979. Marteilia refringens – Considerations of the life cycle and development of Abers Disease in Ostrea edulis. Marine Fisheries Review. January-February 1979: 64-66. Bass, D., D. Moreira, P. Lopez-Garcia, S. Polet, E. E. Chao, S. von der Heyden, J. Pawlowski, and T. Cavalier-Smith. 2005. Polyubiquitin insertions and the phylogeny of Cercozoa and Rhizaria. Protist. 156: 149-161. Bass, D., E. E.-Y. Chao, S. Nikolaev, A. Yabuki, K. Ishida, C. Berney, U. Pakzad, C. Wylezich, and T. Cavalier-Smith. 2009. Phylogeny of novel naked filose and reticulose Cercozoa: Granofilosea cl. n. and Proteomyxidea revised. Protist. 160: 75-109. Burki, F., C. Berney, and J. Pawlowski. 2002. Phylogenetic position of Gromia oviformis Dujardin inferred from nuclear-encoded small subunit ribosomal DNA. Protist. 153: 251-260. Burreson, E. M. and K. S. Reece. 2006. Spore ornamentation of Haplosporidium nelsoni and Haplosporidium costale (Haplosporidia), and incongruence of molecular phylogeny and spore ornamentation in the Haplosporidia. Journal of Parasitology. 92(6): 1295-1301. Cavalier-Smith, T. 2002a. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. International Journal of Systematic Evolutionary Microbiology. 52:297–354. Cavalier-Smith, T. 2003a. Protist phylogeny and the high-level classification of Protozoa. European Journal of Protistology. 39:338-348. Cavalier-Smith, T. and E. E. Chao. 2003a. Phylogeny and classification of phylum Cercozoa (Protozoa). Protist. 154: 341-358. Chantangsi, C, and B. S. Leander. 2010. An SSU rDNA barcoding approach to the diversity of marine interstitial cercozoans, including descriptions of four novel genera and nine novel species. International Journal of Systematic and Evolutionary Microbiology. 60: 1962-1977. Febvre-Chevalier, C. 1990. Heliozoa. In: Margulis, L., J. O. Corliss, M. Melkonian, and D. J. Chapman, eds. 1990. Handbook of the Protoctista; the structure, cultivation, habits and life histories of the eukaryotic microorganisms and their descendants exclusive of animals, plants and fungi. Jones and Bartlett Publishers. Boston. pp. 347-362. Grell, K. G. 1973. Protozoology. Springer-Verlag. New York. Hess, S., N. Sausen, M. Melkonian. 2012. Shedding light on vampires: the phylogeny of vampyrellid amoebae revisited. PLoS ONE. 7(2): e31165. doi:10.1371/journal.pone.0031165 Hine, P. M., R. B. Carnegie, E. M. Burreson, and M. Y. Engelsma. 2009. Inter-relationships of haplosporidians deduced from ultrastructural studies. Diseases of Aquatic Organisms. 83: 247-256. Kudo, R.R. 1966. Protozoology. 5th ed. Charles C. Thomas Publisher. Springfield. Kuhn, S., M. Lange, and L. K. Medlin. 2000. Phylogenetic position of Cryothecomonas inferred from nuclear-encoded small subunit ribosomal RNA. Protist. 151: 337-345. Longet, D., J. M. Archibald, P. J. Keeling, and J. Pawlowski. 2003. Foraminifera and Cercozoa share a common origin according to RNA polymerase II phylogenies. International Journal of Systematic and Evolutionary Microbiology. 53: 1735-1739. Matz, M. V., T. M. Frank, N. J. Marshall, E. A. Wonder, and S. Johnsen. Giant deep-sea protist produces bilaterian-like traces. Current Biology. 18: 1849-1854. Nikolaev, S. I., C. Berney, J. Fahrni, I. Bolivar, S. Polet, A. P. Mylnikov, V. V. Aleshin, N. B. Petrov, and J. Pawlowski. 2004. The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proceedings of the National Academy of Sciences. USA. 101(21): 8066-8071. Patterson, D. J. 1999. The diversity of eukaryotes. American Naturalist. 154 (Suppl.): S96–S124. Patterson, D. J. and M. Zölffel. 1991. Heterotrophic flagellates of uncertain taxonomic position. In: Patterson, D. J. and J. Larsen, eds. The Biology of Free-Living heterotrophic Flagellates. Clarendon Press. Oxford. pp. 427-475. Pawlowski, J. and A. J. Gooday. 2009. Precambrian biota: protistan origin of trace fossils? Current Biology. 19(1): R28-R30. Skovgaard, A. and N. Daugbjerg. 2008. Identity and systematic position of Paradinium poucheti and other Paradinium-like parasites of marine copepods based on morphology and nuclear-encoded SSU rDNA. Protist. 159: 401-413. |
By Jack R. Holt. Last revised: 03/05/2013 |